Skip to content

Track Objects

Combine object detection with multi-object tracking to follow objects through video sequences, maintaining consistent IDs even through occlusions and fast motion.

What you'll learn:

  • Run tracking from the command line with a single command
  • Configure detection models and tracking algorithms
  • Visualize results with bounding boxes, IDs, and trajectories
  • Build custom tracking pipelines in Python

Install

Use the base install for tracking with your own detector. The detection extra adds inference-models for built-in detection.

pip install trackers
pip install trackers[detection]

For more options, see the install guide.


Quickstart

Read frames from video files, webcams, RTSP streams, or image directories. Each frame flows through detection to find objects, then through tracking to assign IDs.

Track objects with one command. Uses RF-DETR Nano and ByteTrack by default.

trackers track --source source.mp4 --output output.mp4

While trackers focuses on ID assignment, this example uses inference-models for detection and supervision for format conversion to demonstrate end-to-end usage.

import cv2

import supervision as sv
from inference import get_model
from trackers import ByteTrackTracker

model = get_model("rfdetr-nano")
tracker = ByteTrackTracker()

cap = cv2.VideoCapture("source.mp4")
while True:
    ret, frame = cap.read()
    if not ret:
        break

    result = model.infer(frame)[0]
    detections = sv.Detections.from_inference(result)
    detections = tracker.update(detections)

CLI Command Builder

Generate a production-ready trackers track command in seconds. Use interactive controls to tune core settings without memorizing flags.


Trackers

Trackers assign stable IDs to detections across frames, maintaining object identity through motion and occlusion.

Select a tracker with --tracker and tune its behavior with --tracker.* arguments.

trackers track --source source.mp4 --tracker bytetrack \
    --tracker.lost_track_buffer 60 \
    --tracker.minimum_consecutive_frames 5

Argument Description Default
--tracker Tracking algorithm. Options: bytetrack, sort. bytetrack
--tracker.lost_track_buffer Frames to retain a track without detections. Higher values improve occlusion handling but risk ID drift. 30
--tracker.track_activation_threshold Minimum confidence to start a new track. Lower values catch more objects but increase false positives. 0.25
--tracker.minimum_consecutive_frames Consecutive detections required before a track is confirmed. Suppresses spurious detections. 3
--tracker.minimum_iou_threshold Minimum IoU overlap to match a detection to an existing track. Higher values require tighter alignment. 0.3

Customize the tracker by passing parameters to the constructor, then call update() each frame and reset() between videos.

import cv2

import supervision as sv
from inference import get_model
from trackers import ByteTrackTracker

model = get_model("rfdetr-nano")
tracker = ByteTrackTracker(
    lost_track_buffer=60,
    minimum_consecutive_frames=5,
)

cap = cv2.VideoCapture("source.mp4")
while True:
    ret, frame = cap.read()
    if not ret:
        break

    result = model.infer(frame)[0]
    detections = sv.Detections.from_inference(result)
    detections = tracker.update(detections)

Detectors

Trackers don't detect objects—they link detections across frames. A detection or segmentation model provides per-frame bounding boxes or masks that the tracker uses to assign and maintain IDs.

Configure detection with --model.* arguments. Filter by confidence and class before tracking.

trackers track --source source.mp4 --model rfdetr-medium \
    --model.confidence 0.3 \
    --model.device cuda \
    --classes 0,2

Argument Description Default
--model Model identifier. Pretrained: rfdetr-nano, rfdetr-small, rfdetr-medium, rfdetr-large. Segmentation: rfdetr-seg-*. rfdetr-nano
--model.confidence Minimum confidence threshold. Lower values increase recall but may add noise. 0.5
--model.device Compute device. Options: auto, cpu, cuda, cuda:0, mps. auto
--classes Comma-separated class IDs to track. Example: 0 for persons, 0,2 for persons and cars. all
--model.api_key Roboflow API key for custom hosted models. none

Trackers are modular—combine any detection library with any tracker. This example uses inference with RF-DETR.

import cv2

import supervision as sv
from inference import get_model
from trackers import ByteTrackTracker

model = get_model("rfdetr-nano")
tracker = ByteTrackTracker()

cap = cv2.VideoCapture("source.mp4")
while True:
    ret, frame = cap.read()
    if not ret:
        break

    result = model.infer(frame, confidence=0.3)[0]
    detections = sv.Detections.from_inference(result)
    detections = tracker.update(detections)

Visualization

Visualization renders tracking results for debugging, demos, and qualitative evaluation.

Enable display and annotation options to see results in real time or in saved video.

trackers track --source source.mp4 --display \
    --show-labels --show-confidence --show-trajectories

Argument Description Default
--display Opens a live preview window. Press q or ESC to quit. false
--show-boxes Draw bounding boxes around tracked objects. true
--show-masks Draw segmentation masks. Only available with rfdetr-seg-* models. false
--show-confidence Show detection confidence scores in labels. false
--show-labels Show class names in labels. false
--show-ids Show tracker IDs in labels. true
--show-trajectories Draw motion trails showing recent positions of each track. false

Use supervision annotators to draw results on frames before saving or displaying.

import cv2

import supervision as sv
from inference import get_model
from trackers import ByteTrackTracker

model = get_model("rfdetr-nano")
tracker = ByteTrackTracker()
box_annotator = sv.BoxAnnotator()
label_annotator = sv.LabelAnnotator()

cap = cv2.VideoCapture("source.mp4")
while True:
    ret, frame = cap.read()
    if not ret:
        break

    result = model.infer(frame)[0]
    detections = sv.Detections.from_inference(result)
    detections = tracker.update(detections)

    frame = box_annotator.annotate(frame, detections)
    frame = label_annotator.annotate(frame, detections)

Source

trackers accepts video files, webcams, RTSP streams, and directories of images as input sources.

Pass videos, webcams, streams, or image directories as input.

trackers track --source source.mp4

Argument Description Default
--source Input source. Accepts file paths (.mp4, .avi), device indices (0, 1), stream URLs (rtsp://), or image directories.

Use opencv-python's VideoCapture to read frames from files, webcams, or streams.

import cv2

import supervision as sv
from inference import get_model
from trackers import ByteTrackTracker

model = get_model("rfdetr-nano")
tracker = ByteTrackTracker()

cap = cv2.VideoCapture(0)
while True:
    ret, frame = cap.read()
    if not ret:
        break

    result = model.infer(frame)[0]
    detections = sv.Detections.from_inference(result)
    detections = tracker.update(detections)

Output

Save tracking results as annotated video files or display them in real time.

Specify an output path to save annotated video.

trackers track --source source.mp4 --output output.mp4 --overwrite

Argument Description Default
--output Path for output video. If a directory is given, saves as output.mp4 inside it. none
--overwrite Allow overwriting existing output files. Without this flag, existing files cause an error. false

Use opencv-python's VideoWriter to save annotated frames with full control over codec and frame rate.

import cv2

import supervision as sv
from inference import get_model
from trackers import ByteTrackTracker

model = get_model("rfdetr-nano")
tracker = ByteTrackTracker()
box_annotator = sv.BoxAnnotator()

cap = cv2.VideoCapture("source.mp4")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)

fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter("output.mp4", fourcc, fps, (width, height))

while True:
    ret, frame = cap.read()
    if not ret:
        break

    result = model.infer(frame)[0]
    detections = sv.Detections.from_inference(result)
    detections = tracker.update(detections)

    frame = box_annotator.annotate(frame, detections)
    out.write(frame)

cap.release()
out.release()